Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction.
نویسندگان
چکیده
Extracellular superoxide dismutase (SOD) contributes only a small fraction to total SOD activity in the normal heart but is strategically located to scavenge free radicals in the extracellular compartment. To examine the physiological significance of extracellular SOD in the response of the heart to hemodynamic stress, we studied the effect of extracellular SOD deficiency on transverse aortic constriction (TAC)-induced left ventricular remodeling. Under unstressed conditions extracellular SOD deficiency had no effect on myocardial total SOD activity, the ratio of glutathione:glutathione disulfide, nitrotyrosine content, or superoxide anion production but resulted in small but significant increases in myocardial fibrosis and ventricular mass. In response to TAC for 6 weeks, extracellular SOD-deficient mice developed more severe left ventricular hypertrophy (heart weight increased 2.56-fold in extracellular SOD-deficient mice as compared with 1.99-fold in wild-type mice) and pulmonary congestion (lung weight increased 2.92-fold in extracellular SOD-deficient mice as compared with 1.84-fold in wild-type mice). Extracellular SOD-deficient mice also had more ventricular fibrosis, dilation, and a greater reduction of left ventricular fractional shortening and rate of pressure development after TAC. TAC resulted in greater increases of ventricular collagen I, collagen III, matrix metalloproteinase-2, matrix metalloproteinase-9, nitrotyrosine, and superoxide anion production. TAC also resulted in a greater decrease of the ratio of glutathione:glutathione disulfide in extracellular SOD-deficient mice. The finding that extracellular SOD deficiency had minimal impact on myocardial overall SOD activity but exacerbated TAC induced myocardial oxidative stress, hypertrophy, fibrosis, and dysfunction indicates that the distribution of extracellular SOD in the extracellular space is critically important in protecting the heart against pressure overload.
منابع مشابه
Ecto-5'-nucleotidase deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction.
This study examined whether endogenous extracellular adenosine acts to facilitate the adaptive response of the heart to chronic systolic overload. To examine whether endogenous extracellular adenosine can protect the heart against pressure-overload-induced heart failure, transverse aortic constriction was performed on mice deficient in extracellular adenosine production as the result of genetic...
متن کاملEUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant.
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We r...
متن کاملThe ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.
OBJECTIVE ATP-binding cassette transporter subfamily G member 2 (ABCG2), expressed in microvascular endothelial cells in the heart, has been suggested to regulate several tissue defense mechanisms. This study was performed to elucidate its role in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS Pressure overload was induced in 8- to 12-week-old wild-type and Abcg2-/- mice b...
متن کاملUK-8, a Superoxide Dismutase and Catalase imetic, Reduces Cardiac Oxidative Stress nd Ameliorates Pressure Overload-Induced eart Failure in the Harlequin Mouse Mutant
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We rec...
متن کاملGrowth Arrest-Specific 6 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy.
Growth arrest-specific 6 (GAS6) is a member of the vitamin K-dependent protein family that is involved in the regulation of the cardiovascular system, including vascular remodeling, homeostasis, and atherosclerosis. However, there is still no study that systemically elucidates the role of GAS6 in cardiac hypertrophy. Here, we found that GAS6 was upregulated in human dilated cardiomyopathic hear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2008